Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Appl Microbiol ; 134(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37437916

RESUMO

AIMS: We investigated the putative fungistatic and fungicidal activities of pomegranate sarcotesta lectin (PgTeL) against Cryptococcus neoformans B3501 (serotype D), specifically the ability of PgTeL to inhibit yeast capsule and biofilm formation in this strain. METHODS AND RESULTS: PgTeL showed a minimum inhibitory concentration of 172.0 µg ml-1, at which it did not exhibit a fungicidal effect. PgTeL concentrations of 4.0-256.0 µg ml-1 reduced biofilm biomass by 31.0%-64.0%. Furthermore, 32.0-256.0 µg ml-1 PgTeL decreased the metabolic activity of the biofilm by 32.0%-93.0%. Scanning electron microscopy images clearly revealed disruption of the biofilm matrix. Moreover, PgTeL disrupted preformed biofilms. At concentrations of 8.0-256.0 µg ml-1, PgTeL reduced metabolic activity in C. neoformans by 36.0%-92.0%. However, PgTeL did not inhibit the ability of B3501 cells to form capsules under stress conditions. CONCLUSIONS: PgTeL inhibited biofilm formation and disrupted preformed biofilms, demonstrating its potential for use as an anticryptococcal agent.


Assuntos
Criptococose , Cryptococcus neoformans , Punica granatum , Lectinas/farmacologia , Punica granatum/metabolismo , Plâncton/metabolismo , Biofilmes , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/metabolismo
2.
Braz J Microbiol ; 53(3): 1289-1295, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35648381

RESUMO

Fusariosis has presented a significant increase in their incidence in the last years. This epidemiological panorama probably is due to the increasing profile of refractory susceptibility of Fusarium spp. to available drugs, especially in immunocompromised individuals. Thus, the development of new compounds with effectiveness on these organisms is a necessity. This study evaluated the antifungal potential of a chloroacetamide derivative (4-BFCA) against resistant Fusarium strains. As a result, the compound was effective against all strains (MIC range 12.5-50 µg/mL). The time kill assay demonstrated that 4-BFCA presents a concentration-dependent fungicidal action. Although its action mechanism has not yet been elucidated, it was possible to observe its efficacy through damages and alterations provoked along the hyphae of Fusarium spp. 4-BFCA maintained a high survival rate of Tenebrio molitor larvae, suggesting that it does not cause acute systemic toxicity on this host at the concentration evaluated. In addition, 4-BFCA was 83.33% effective in combating a fungal infection in vivo on the chorioallantoid membrane of embryonated eggs. Our results are very promising and arouse interest to investigate the action of 4-BFCA on Fusarium strains since it acts as a possible candidate for the development of new therapies for the treatment of fusariosis.


Assuntos
Fusariose , Fusarium , Acetamidas/farmacologia , Acetamidas/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Fusariose/tratamento farmacológico , Fusariose/epidemiologia , Fusariose/microbiologia , Humanos
3.
Braz J Microbiol ; 52(3): 1347-1352, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33954929

RESUMO

We present the structural modification of a commercially available glass ionomer cement by inserting the imidazolium salt 1-n-hexadecyl-3-methylimidazolium chloride (C16MImCl), composing a new biomaterial with antifungal biofilm activity. Test specimens were prepared using a commercial glass ionomer cement to which 10 ppm of cetylpyridinium chloride (reference ionic antifungal agent) or C16MImCl were added. The feasibility and hypoallergenicity of the new biomaterial were assessed by microhardness plastic deformation and chorioallantoic membrane assays. Colony counting and scanning electron microscopy were used to evaluate the modified specimens' antibiofilm activity against three multidrug-resistant Candida species. The modified glass ionomer cement presented a strong antibiofilm activity against Candida spp., without losing its original micromechanical and hypoallergenic properties, rendering it a promising candidate for further application in dentistry.


Assuntos
Antifúngicos , Materiais Biocompatíveis , Cimentos de Ionômeros de Vidro , Imidazóis/química , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida/efeitos dos fármacos , Cimentos de Ionômeros de Vidro/farmacologia , Microscopia Eletrônica de Varredura , Propriedades de Superfície
4.
J Med Microbiol ; 70(3)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33502306

RESUMO

Introduction. Onychomycosis infections currently show a significant increase, affecting about 10 % of the world population. Trichophyton rubrum is the main agent responsible for about 80 % of the reported infections. The clinical cure for onychomycosis is extremely difficult and effective new antifungal therapy is needed.Hypothesis/Gap Statement. Ex vivo onychomycosis models using porcine hooves can be an excellent alternative for evaluating the efficacy of new anti-dermatophytic agents in a nail lacquer.Aim. Evaluation of the effectiveness of a nail lacquer containing a quinoline derivative on an ex vivo onychomycosis model using porcine hooves, as well as the proposal of a plausible antifungal mechanism of this derivative against dermatophytic strains.Methodology. The action mechanism of a quinoline derivative was evaluated through the sorbitol protection assay, exogenous ergosterol binding, and the determination of the dose-response curves by time-kill assay. Scanning electron microscopy evaluated the effect of the derivative in the fungal cells. The efficacy of a quinoline-derivative nail lacquer on an ex vivo onychomycosis model using porcine hooves was evaluated as well.Results. The quinoline derivative showed a time-dependent fungicidal effect, demonstrating reduction and damage in the morphology of dermatophytic hyphae. In addition, the ex vivo onychomycosis model was effective in the establishment of infection by T. rubrum.Conclusion. Treatment with the quinoline-derivative lacquer showed a significant inhibitory effect on T. rubrum strain in this infection model. Finally, the compound presents high potential for application in a formulation such as nail lacquer as a possible treatment for dermatophytic onychomycosis.


Assuntos
Antifúngicos/farmacologia , Arthrodermataceae/efeitos dos fármacos , Dermatoses do Pé/microbiologia , Casco e Garras/microbiologia , Onicomicose/tratamento farmacológico , Quinolinas/farmacologia , Administração Tópica , Animais , Modelos Animais de Doenças , Dermatoses do Pé/tratamento farmacológico , Humanos , Laca , Onicomicose/microbiologia , Suínos
5.
Med Mycol ; 59(5): 431-440, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32692811

RESUMO

Fungal infections that affect humans and plants have increased significantly in recent decades. However, these pathogens are still neglected when compared to other infectious agents. Due to the high prevalence of these infections, the need for new molecules with antifungal potential is recognized, as pathogenic species are developing resistance to the main drugs available. This work reports the design and synthesis of 1,2,3-triazole derivatives of 8-hydroxyquinoline, as well as the determination of their activities against a panel of fungal species: Candida spp., Trichosporon asahii, Magnusiomyces capitatus, Microsporum spp., Trichophyton spp. and Fusarium spp. The triazoles 5-(4-phenyl-1H-1,2,3-triazol-1-yl)quinolin-8-ol (12) and 5-(4-(cyclohex-1-en-1-yl)-1H-1,2,3-triazol-1-yl)quinolin-8-ol (16) were more promising, presenting minimum inhibitory concentration (MIC) values between 1-16 µg/ml for yeast and 2-4 µg/ml for dermatophytes. However, no relevant anti-Fusarium spp. activity was observed. In the time-kill assays with Microsporum canis, 12 and 16 presented time-dependent fungicide profile at 96 h and 120 h in all evaluated concentrations, respectively. For Candida guilliermondii, 12 was fungicidal at all concentrations at 6 h and 16 exhibited a predominantly fungistatic profile. Both 12 and 16 presented low leukocyte toxicity at 4 µg/ml and the cell viability was close to 100% after the treatment with 12 at all tested concentrations. The sorbitol assay combined with SEM suggest that damages on the fungal cell wall could be involved in the activity of these derivatives. Given the good results obtained with this series, scaffold 4-(cycloalkenyl or phenyl)-5-triazol-8-hydroxyquinoline appears to be a potential pharmacophore for exploration in the development of new antifungal agents.


Assuntos
Antifúngicos/farmacologia , Fungos/citologia , Fungos/efeitos dos fármacos , Oxiquinolina/química , Oxiquinolina/farmacologia , Triazóis/química , Triazóis/farmacologia , Basidiomycota/efeitos dos fármacos , Candida/efeitos dos fármacos , Sobrevivência Celular , Células Cultivadas , Fusarium/efeitos dos fármacos , Humanos , Leucócitos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Microsporum/efeitos dos fármacos , Oxiquinolina/análogos & derivados , Saccharomycetales/efeitos dos fármacos , Trichophyton/efeitos dos fármacos
6.
Fungal Biol ; 124(7): 629-638, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32540186

RESUMO

In nature, microorganisms often exhibit competitive behavior for nutrients and limited space, allowing them to alter the virulence determinants of pathogens. The human pathogenic yeast Cryptococcus neoformans can be found organized in biofilms, a complex community composed of an extracellular matrix which confers protection against predation. The aim of this study was to evaluate and characterize antagonistic interactions between two cohabiting microorganisms: C. neoformans and the bacteria Serratia marcescens. The interaction of S. marcescens with C. neoformans expressed a negative effect on biofilm formation, polysaccharide capsule, production of urease, and melanization of the yeast. These findings evidence that competition in mixed communities can result in dominance by one species, with direct impact on the physiological modulation of virulence determinants. Such an approach is key for understating the response of communities to the presence of competitors and, ultimately, rationally designing communities to prevent and treat certain diseases.


Assuntos
Biofilmes , Cryptococcus neoformans , Interações Microbianas , Serratia marcescens , Cryptococcus neoformans/patogenicidade , Cryptococcus neoformans/fisiologia , Interações Microbianas/fisiologia , Serratia marcescens/patogenicidade , Serratia marcescens/fisiologia , Fatores de Virulência/metabolismo
7.
Sci Rep ; 10(1): 2362, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047210

RESUMO

Phenotypic heterogeneity is an important trait for the development and survival of many microorganisms including the yeast Cryptococcus spp., a deadly pathogen spread worldwide. Here, we have applied scanning electron microscopy (SEM) to define four Cryptococcus spp. capsule morphotypes, namely Regular, Spiky, Bald, and Phantom. These morphotypes were persistently observed in varying proportions among yeast isolates. To assess the distribution of such morphotypes we implemented an automated pipeline capable of (1) identifying potentially cell-associated objects in the SEM-derived images; (2) computing object-level features; and (3) classifying these objects into their corresponding classes. The machine learning approach used a Random Forest (RF) classifier whose overall accuracy reached 85% on the test dataset, with per-class specificity above 90%, and sensitivity between 66 and 94%. Additionally, the RF model indicates that structural and texture features, e.g., object area, eccentricity, and contrast, are most relevant for classification. The RF results agree with the observed variation in these features, consistently also with visual inspection of SEM images. Finally, our work introduces morphological variants of Cryptococcus spp. capsule. These can be promptly identified and characterized using computational models so that future work may unveil morphological associations with yeast virulence.


Assuntos
Variação Anatômica , Cryptococcus/ultraestrutura , Cápsulas Fúngicas/ultraestrutura , Aprendizado de Máquina , Microscopia Eletrônica de Varredura/métodos , Cryptococcus/genética , Fenótipo
8.
Mycoses ; 63(2): 197-211, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31657052

RESUMO

BACKGROUND: Fungal infections are highly prevalent and are responsible for high rates of morbidity and mortality. In this context, the search for new treatment alternatives is very relevant. OBJECTIVES: Analyse chemical compounds for antifungal potential against dermatomycosis fungi. METHODS: The antifungal activity of 121 compounds, intermediates or derivatives of 1,3-bis(aryloxy)propane substituted at C-2 (111 compounds) and isothiouronium derivatives (10 compounds) was investigated through susceptibility tests, mechanism of action, toxicity and hydrogel incorporation. RESULTS: The compound 1,3-bis(3,4-dichlorophenoxy)propan-2-aminium chloride (2j) was the most active fungicide against dermatophytes and Candida spp., at very low concentrations (0.39-3.12 µg/mL), including action on resistant and multidrug-resistant clinical strains. Compound 2j has presented a promising toxicity profile, showing selectivity index >10, relative to human lymphocytes. The compound was classified as non-irritant by the HET-CAM test and did not cause histopathological alterations in pig ear skin, thus presenting an excellent perspective for topical application. 2j targets the fungal cell wall, which was confirmed by scanning electron microscopy, which also indicated the additional ability of 2j to inhibit the Candida albicans pseudohyphae formation and biofilm of Microsporum canis. Compound 2j was incorporated in a hydrogel with bioadhesive potential. The results of the human skin permeation showed that 2j remained significantly in the epidermis, ideally for the dermatomycosis treatment. CONCLUSIONS: Therefore, the compound 2j demonstrated the potential for antifungal drug development, with a action mechanism elucidated and already applied in a semisolid formulation as a new therapeutic option for fungal skin infections.


Assuntos
Antifúngicos/farmacologia , Arthrodermataceae/efeitos dos fármacos , Candida/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Propano/análogos & derivados , Animais , Antifúngicos/química , Sobrevivência Celular , Células Cultivadas , Galinhas , Membrana Corioalantoide/efeitos dos fármacos , Orelha Externa/efeitos dos fármacos , Epiderme/efeitos dos fármacos , Ergosterol/metabolismo , Feminino , Citometria de Fluxo , Humanos , Hidrogéis , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Masculino , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Propano/química , Propano/farmacologia , Reologia , Relação Estrutura-Atividade , Suínos
9.
Biomolecules ; 9(12)2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817559

RESUMO

Cryptococcus neoformans is an encapsulated yeast responsible for more than 180,000 deaths per year. The standard therapeutic approach against cryptococcosis is a combination of amphotericin B with flucytosine. In countries where cryptococcosis is most prevalent, 5-fluorocytosine is rarely available, and amphotericin B requires intravenous administration. C. neoformans biofilm formation is related to increased drug resistance, which is an important outcome for hospitalized patients. Here, we describe new molecules with anti-cryptococcal activity. A collection of 66 semisynthetic derivatives of ursolic acid and betulinic acid was tested against mature biofilms of C. neoformans at 25 µM. Out of these, eight derivatives including terpenes, benzazoles, flavonoids, and quinolines were able to cause damage and eradicate mature biofilms. Four terpene compounds demonstrated significative growth inhibition of C. neoformans. Our study identified a pentacyclic triterpenoid derived from betulinic acid (LAFIS13) as a potential drug for anti-cryptococcal treatment. This compound appears to be highly active with low toxicity at minimal inhibitory concentration and capable of biofilm eradication.


Assuntos
Biofilmes/efeitos dos fármacos , Criptococose/prevenção & controle , Cryptococcus neoformans/fisiologia , Triterpenos Pentacíclicos/farmacologia , Linhagem Celular , Criptococose/microbiologia , Cryptococcus neoformans/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Triterpenos Pentacíclicos/química , Triterpenos/química , Ácido Betulínico
10.
Saudi Pharm J ; 27(8): 1064-1074, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31885466

RESUMO

Development of new antimicrobial agents, capable of combating resistant and multidrug-resistant fungal and bacterial clinical strains, is necessary. This study presents the synthesis and antimicrobial screening of 42 2-substituted-1,4-benzenediols, being 10 novel compounds. In total, 23 compounds showed activity against fungi and/or bacteria. Benzenediol compounds 2, 5, 6, 8, 11, and 12 demonstrated broad spectrum antimicrobial actions, including resistant and multidrug-resistant species of dermatophytes (Trichophyton mentagrophytes), Candida spp. and the ESKAPE panel of bacteria. Minimum inhibitory concentrations of these compounds for fungi and bacterial strains ranged from 25 to 50 µg/ml and 8-128 µg/ml, respectively. The antifungal mechanism of action is related to the fungal cell wall of dermatophytes and membrane disruption to dermatophytes and yeasts, in the presence of compound 8. Specific structural changes, such as widespread thinning along the hyphae and yeast lysis, were observed by scanning electron microscopy. The effects of compound 8 on cell viability are dose-dependent; however they did not cause genotoxicity and mutagenicity in human leukocyte cells nor haemolysis. Moreover, the compounds were identified as nonirritant by the ex-vivo Hen's egg test-chorioallantoic membrane (HET-CAM). The furan-1,4-benzenediol compound 5 showed in vivo efficacy to combat S. aureus infection using embryonated chicken eggs. Therefore, the compounds 8, and 5 are promising as hits for the development of new antimicrobial drugs with reduced toxicity.

11.
Mycologia ; 111(4): 612-623, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31204895

RESUMO

The aim of this study was to evaluate the antifungal potential of 11 chloroacetamide derivatives and derivative incorporated into a film-forming system (FFS) as a potential alternative for the topical treatment of superficial and skin mycoses. The minimum inhibitory concentration (MIC) evaluation followed Clinical and Laboratory Standards Institute protocols M27-A3 (Candida) and M28-A2 (dermatophytes). Compounds 2, 3, and 4 were the most effective against Candida species (MIC range: 25-50 µg/mL) and dermatophytes (MIC range: 3.12-50 µg/mL). Compound 2 maintained its antifungal activity when incorporated in a FFS, with MIC values equivalent to the free compound. In addition, the compound does not act through complexation with ergosterol, suggesting that it may act on other targets of the fungal cell membrane. Chloroacetamide derivatives presented anti-Candida and anti-dermatophytic effectiveness. The FFS containing compound 2 has shown to be superior to traditional topical treatment of superficial and cutaneous fungal infections. It was found that these new chemical entities, with their applicability, are an excellent alternative to the topical treatment of fungal skin infections.


Assuntos
Acetamidas/uso terapêutico , Arthrodermataceae/efeitos dos fármacos , Candida/efeitos dos fármacos , Dermatomicoses/tratamento farmacológico , Acetamidas/administração & dosagem , Acetamidas/farmacologia , Administração Tópica , Antifúngicos/uso terapêutico , Dermatomicoses/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Pele/microbiologia
12.
Folia Microbiol (Praha) ; 64(4): 509-519, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30734157

RESUMO

Dermatophytes are the etiological agents of cutaneous mycoses, including the prevalent nail infections and athlete's foot. Candida spp. are opportunistic and emerging pathogens, causing superficial to deeper infections related to high mortality rates. As a consequence of prolonged application of antifungal drugs, the treatment failures combined with multidrug-resistance have become a serious problem in clinical practice. Therefore, novel alternative antifungals are required urgently. δ-Lactones have attracted great interest owing to their wide range of biological activity. This article describes the antifungal activity of synthetic δ-lactones against yeasts of the genus Candida spp. and dermatophytes (through the broth microdilution method), discusses the pathways by which the compounds exert this action (toward the fungal cell wall and/or membrane), and evaluates the toxicity to human leukocytes and chorioallantoic membrane (by the hen's egg test-chorioallantoic membrane). Two of the compounds in the series presented broader spectrum of antifungal activity, including against resistant fungal species. The mechanism of action was related to damage in the fungal cell wall and membrane, with specific target action dependent on the type of substituent present in the δ-lactone structure. The damage in the fungal cell was corroborated by electron microscopy images, which evidenced lysed and completely altered cells after in vitro treatment with δ-lactones. Toxicity was dose dependent for the viability of human leukocytes, but none of the compounds was mutagenic, genotoxic, or membrane irritant when evaluated at higher concentrations than MIC. In this way, δ-lactones constitute a class with excellent perspectives regarding their potential applications as antifungals.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Lactonas/química , Lactonas/farmacologia , Antifúngicos/toxicidade , Arthrodermataceae/efeitos dos fármacos , Candida/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Desenvolvimento de Medicamentos , Humanos , Lactonas/toxicidade , Leucócitos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
13.
Saudi Pharm J ; 27(1): 41-48, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30662305

RESUMO

The 8-hydroxyquinoline core is a privileged scaffold for drug design explored to afford novel derivatives endowed with biological activity. Our research aimed at clarifying the antifungal mechanism of action of clioquinol, 8-hydroxy-5-quinolinesulfonic acid, and 8-hydroxy-7-iodo-5-quinolinesulfonic acid (three 8-hydroxyquinoline derivatives). The antifungal mode of action of these derivatives on Candida spp. and dermatophytes was investigated using sorbitol protection assay, cellular leakage effect, ergosterol binding assay, and scanning electron microscopy. Clioquinol damaged the cell wall and inhibited the formation of pseudohyphae by C. albicans. The 8-hydroxy-5-quinolinesulfonic acid derivatives compromised the functional integrity of cytoplasmic membranes. To date no similar report was found about the antifungal mechanism of 8-hydroxyquinolines. These results, combined with the broad antifungal spectrum already demonstrated previously, reinforce the potential of 8-hydroxyquinolines for the development of new drugs.

14.
mSphere ; 3(2)2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29897877

RESUMO

The yeast-like pathogen Cryptococcus gattii is an etiological agent of cryptococcosis. The major cryptococcal virulence factor is the polysaccharide capsule, which is composed of glucuronoxylomannan (GXM), galactoxylomannan (GalXM), and mannoproteins (MPs). The GXM and GalXM polysaccharides have been extensively characterized; however, there is little information about the role of mannoproteins in capsule assembly and their participation in yeast pathogenicity. The present study characterized the function of a predicted mannoprotein from C. gattii, designated Krp1. Loss-of-function and gain-of-function mutants were generated, and phenotypes associated with the capsular architecture were evaluated. The null mutant cells were more sensitive to a cell wall stressor that disrupts beta-glucan synthesis. Also, these cells displayed increased GXM release to the culture supernatant than the wild-type strain did. The loss of Krp1 influenced cell-associated cryptococcal polysaccharide thickness and phagocytosis by J774.A1 macrophages in the early hours of interaction, but no difference in virulence in a murine model of cryptococcosis was observed. In addition, recombinant Krp1 was antigenic and differentially recognized by serum from an individual with cryptococcosis, but not with serum from an individual with candidiasis. Taken together, these results indicate that C. gattii Krp1 is important for the cell wall structure, thereby influencing capsule assembly, but is not essential for virulence in vivoIMPORTANCECryptococcus gattii has the ability to escape from the host's immune system through poorly understood mechanisms and can lead to the death of healthy individuals. The role of mannoproteins in C. gattii pathogenicity is not completely understood. The present work characterized a protein, Kpr1, that is essential for the maintenance of C. gattii main virulence factor, the polysaccharide capsule. Our data contribute to the understanding of the role of Kpr1 in capsule structuring, mainly by modulating the distribution of glucans in C. gattii cell wall.


Assuntos
Cryptococcus gattii/química , Cápsulas Fúngicas/química , Proteínas Fúngicas/química , Glicoproteínas de Membrana/química , Polissacarídeos/química , Fatores de Virulência/química , Animais , Linhagem Celular , Parede Celular/química , Criptococose/imunologia , Cryptococcus gattii/genética , Cryptococcus gattii/patogenicidade , Feminino , Proteínas Fúngicas/genética , Macrófagos/imunologia , Glicoproteínas de Membrana/genética , Camundongos , Mutação , Fagocitose , Fenótipo , Polissacarídeos/genética , Virulência , Fatores de Virulência/genética
15.
J Pharm Pharmacol ; 70(9): 1216-1227, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29956331

RESUMO

OBJECTIVES: The aim of this study was to evaluate the antifungal, antichemotactic and antioxidant activities of Schinus lentiscifolius essential oil, as well as its combined effect with terbinafine and ciclopirox, against dermatophytes. METHODS: Essential oil was analysed by GC-MS. The antifungal activity and the mechanism of action were determined by broth microdilution, sorbitol and ergosterol assays, as well as scanning electron microscopy. The checkerboard method was used for evaluating the interactions with commercial antifungal agents. The antioxidant and antichemotactic activities were measured using the DPPH and the modified Boyden chamber methods, respectively. KEY FINDINGS: Chemical analysis revealed the presence of 33 compounds, the primary ones being γ-eudesmol (12.8%) and elemol (10.5%). The oil exhibited 97.4% of antichemotactic activity and 37.9% of antioxidant activity. Antifungal screening showed effect against dermatophytes with minimum inhibitory concentration values of 125 and 250 µg/ml. Regarding the mechanisms of action, the assays showed that the oil can act on the fungal cell wall and membrane. Synergistic interactions were observed using the combination with antifungals, primarily terbinafine. CONCLUSIONS: Schinus lentiscifolius essential oil acted as a chemosensitizer of the fungal cell to the drug, resulting in an improvement in the antifungal effect. Therefore, this combination can be considered as an alternative for the topical treatment of dermatophytosis.


Assuntos
Anacardiaceae , Antifúngicos/administração & dosagem , Arthrodermataceae/efeitos dos fármacos , Membrana Corioalantoide/efeitos dos fármacos , Ciclopirox/administração & dosagem , Terbinafina/administração & dosagem , Animais , Antifúngicos/isolamento & purificação , Arthrodermataceae/fisiologia , Galinhas , Membrana Corioalantoide/fisiologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana/métodos , Suínos
16.
Cell Microbiol ; 20(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29113016

RESUMO

Cryptococcus neoformans is a basidiomycetous yeast and the cause of cryptococcosis in immunocompromised individuals. The most severe form of the disease is meningoencephalitis, which is one of the leading causes of death in HIV/AIDS patients. In order to access the central nervous system, C. neoformans relies on the activity of certain virulence factors such as urease, which allows transmigration through the blood-brain barrier. In this study, we demonstrate that the calcium transporter Pmc1 enables C. neoformans to penetrate the central nervous system, because the pmc1 null mutant failed to infect and to survive within the brain parenchyma in a murine systemic infection model. To investigate potential alterations in transmigration pathways in these mutants, global expression profiling of the pmc1 mutant strain was undertaken, and genes associated with urease, the Ca2+ -calcineurin pathway, and capsule assembly were identified as being differentially expressed. Also, a decrease in urease activity was observed in the calcium transporter null mutants. Finally, we demonstrate that the transcription factor Crz1 regulates urease activity and that the Ca2+ -calcineurin signalling pathway positively controls the transcription of calcium transporter genes and factors related to transmigration.


Assuntos
Sistema Nervoso Central/microbiologia , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/patogenicidade , Proteínas Fúngicas/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Animais , Transporte Biológico/fisiologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/microbiologia , Encéfalo/metabolismo , Encéfalo/microbiologia , Calcineurina/metabolismo , Cálcio/metabolismo , Linhagem Celular , Criptococose/metabolismo , Criptococose/microbiologia , Modelos Animais de Doenças , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Meningoencefalite/metabolismo , Meningoencefalite/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Vacúolos/metabolismo , Vacúolos/microbiologia , Virulência/fisiologia , Fatores de Virulência/metabolismo
17.
Int J Mol Sci ; 18(7)2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28718785

RESUMO

Synthetic polymers are the cause of some major environmental impacts due to their low degradation rates. Polyurethanes (PU) are widely used synthetic polymers, and their growing use in industry has produced an increase in plastic waste. A commercial polyether-based thermoplastic PU with hydrolytic stability and fungus resistance was only attacked by an entomopathogenic fungus, Metarhiziumanisopliae, when the films were pre-treated with Ultraviolet (UV) irradiation in the presence of reactive atmospheres. Water contact angle, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR), scanning electron microscopy (SEM), and profilometer measurements were mainly used for analysis. Permanent hydrophilic PU films were produced by the UV-assisted treatments. Pristine polyether PU films incubated for 10, 30, and 60 days did not show any indication of fungal growth. On the contrary, when using oxygen in the UV pre-treatment a layer of fungi spores covered the sample, indicating a great adherence of the microorganisms to the polymer. However, if acrylic acid vapors were used during the UV pre-treatment, a visible attack by the entomopathogenic fungi was observed. SEM and FTIR-ATR data showed clear evidence of fungal development: growth and ramifications of hyphae on the polymer surface with the increase in UV pre-treatment time and fungus incubation time. The results indicated that the simple UV surface activation process has proven to be a promising alternative for polyether PU waste management.


Assuntos
Biofilmes/efeitos dos fármacos , Biofilmes/efeitos da radiação , Éteres/farmacologia , Fungos/crescimento & desenvolvimento , Fungos/efeitos da radiação , Poliuretanos/farmacologia , Raios Ultravioleta , Biofilmes/crescimento & desenvolvimento , Fungos/efeitos dos fármacos , Fungos/ultraestrutura , Processamento de Imagem Assistida por Computador , Peso Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
18.
Front Microbiol ; 8: 535, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28400768

RESUMO

Cryptococcus neoformans is the most lethal pathogen of the central nervous system. The gold standard treatment of cryptococcosis, a combination of amphotericin B with 5-fluorocytosine, involves broad toxicity, high costs, low efficacy, and limited worldwide availability. Although the need for new antifungals is clear, drug research and development (R&D) is costly and time-consuming. Thus, drug repurposing is an alternative to R&D and to the currently available tools for treating fungal diseases. Here we screened a collection of compounds approved for use in humans seeking for those with anti-cryptococcal activity. We found that benzimidazoles consist of a broad class of chemicals inhibiting C. neoformans growth. Mebendazole and fenbendazole were the most efficient antifungals showing in vitro fungicidal activity. Since previous studies showed that mebendazole reaches the brain in biologically active concentrations, this compound was selected for further studies. Mebendazole showed antifungal activity against phagocytized C. neoformans, affected cryptococcal biofilms profoundly and caused marked morphological alterations in C. neoformans, including reduction of capsular dimensions. Amphotericin B and mebendazole had additive anti-cryptococcal effects. Mebendazole was also active against the C. neoformans sibling species, C. gattii. To further characterize the effects of the drug a random C. gattii mutant library was screened and indicated that the antifungal activity of mebendazole requires previously unknown cryptococcal targets. Our results indicate that mebendazole is as a promising prototype for the future development of anti-cryptococcal drugs.

19.
Front Microbiol ; 8: 2534, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312225

RESUMO

Microbial biofilms are highly structured and dynamic communities in which phenotypic diversification allows microorganisms to adapt to different environments under distinct conditions. The environmentally ubiquitous pathogen Cryptococcus neoformans colonizes many niches of the human body and implanted medical devices in the form of biofilms, an important virulence factor. A new approach was used to characterize the underlying geometrical distribution of C. neoformans cells during the adhesion stage of biofilm formation. Geometrical aspects of adhered cells were calculated from the Delaunay triangulation and Voronoi diagram obtained from scanning electron microscopy images (SEM). A correlation between increased biofilm formation and higher ordering of the underlying cell distribution was found. Mature biofilm aggregates were analyzed by applying an adapted protocol developed for ultrastructure visualization of cryptococcal cells by SEM. Flower-like clusters consisting of cells embedded in a dense layer of extracellular matrix were observed as well as distinct levels of spatial organization: adhered cells, clusters of cells and community of clusters. The results add insights into yeast motility during the dispersion stage of biofilm formation. This study highlights the importance of cellular organization for biofilm growth and presents a novel application of the geometrical method of analysis.

20.
J Photochem Photobiol B ; 163: 319-26, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27614242

RESUMO

Biofilms provide an ideal environment for protecting the microbial cells from damage caused by humoral and cellular immune system components, promoting resistance, infections and increasing mortality and morbidity of patients in health facilities. In an attempt to provide an innovative solution for preventing contamination in hospital environments, this study evaluated nine structural complementary fluorescent benzimidazo[1,2-α]quinolines as bifunctional agents that both detect and have biocidal activity against yeast biofilms on stainless steel surfaces. The benzimidazoles' staining capability was determined by a fluorescence microscopy study and spraying the substance on yeast biofilm contaminated stainless steel surfaces. Furthermore, their in vitro human leukocyte cytotoxicity was evaluated with trypan blue and their biocidal activity was determined as the minimum inhibitory concentration against Candida tropicalis, C. albicans and C. parapsilosis strains. Moreover, scanning electron micrographs were recorded to study the biocidal activity. This resulted in the identification of 7, which presents all the desired characteristics (such as solubility) and capabilities (staining and biocide activity against all tested biofilm forming yeast strains) at the same time. As such, benzimidazole 7 has the potential to guarantee the use of disinfected medical and surgical instruments in clinical and surgical procedures, consequently, contributing to an increased safety for patients.


Assuntos
Biofilmes , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Quinolinas/química , Quinolinas/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/isolamento & purificação , Farmacorresistência Fúngica/efeitos dos fármacos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...